Massively Parallel A gorithms for Real -Time Wavefront Control
of a Dense Adaptive Optics System

Am r Fijany, Mark Milman, and Davi d Redding

Jet propulsion Laboratory, California Institute of Technol ogy
4800 Cak Grove Drive, Pasadena, CA 91109

ABSTRACT

In this paper massively parallel algorithns and architectures for real-tinme
wavefront control of a dense adaptive optic system (SELENE) are presented. W
have already shown that the conputation of a near optinmal control algorithm
for SELENE can be reduced to the solution of a discrete Poisson equation on a
regul ar domain. Although, this represents an optimal conputation, due the
large size of the system and the high sanpling rate requirenent, the
i mpl ementation of this control algorithm peoses a computationally chal | engi ng
problem Since it demands a sustained conputational throughput of the order of
10 GFlops. W devel op a novel algorithm designated as Fast Invariant
Imbedding al gorithm which offers a nassive degree of parallelismwth sinple
comuni cation and synchronization requirements. Due to these features, our
algorithmis significantly nore efficient than other Fast Poisson Solvers for
i mpl ementation on massively parallel architectures. W also discuss two
massively parallel, algorithmcally specialized, architectures for |ow cost
and optimal inplementation of the Fast Invariant Imbedding al gorithm

1. I NTRCDUCTI ON

This paper presents massively parallel algorithnms and architectures for
wavefront control of the Space Laser Electric Energy (SELENE) power beam ng
system The real-time wavefront control of SELENE represents a computationally
chal | engi ng probl emdue to the large size of the systemand the high sanpling
rate requirement. W have already shown that the conputation of a novel, near
optimal, control wavefront algorithm can be reduced to the solution of a two-
di nensi onal (2D) discrete Poisson equation with Neumann boundary conditions
[11. Al t hough, SELENE can have rather arbitrary geonetries, we have shown [11
that the conputational domain of the corresponding discrete Poisson equation
can be transformed into a regular square domain.

Such a domain regularization strategy, while introduces a mnimal error in
the conputation, enable the use of the so called Fast Poisson Solvers [2] with
an optimal conputational cost for our problem For a typical configuration of
the SELENE conprising a 2D array of NxN segnents, the conputational conplexity

of our control strategy is then of O(NzLog N). Conpared with the o(N*)

conput ati onal conplexity of fully optinmal control strategies and for the

typi cal values of N of the order of hundreds, this represents nore than three
orders of nagnitude inprovenent in the conputational cost. However, even with
such a drastic inprovement, the real-time implementation of our control

strategy by using the Fast Poisson Solvers still requires a formdable
conmputing capability. For a typical case of N = 500 and with a 1 KHz sanpling
rate, the real-tine inplenentation will require a sustai ned conputational

t hroughput of the order of 10 GFlops. This clearly suggests that the
exploitation of a massive degree of parallelismis the key factor for
achieving the required conputational efficiency in a cost-effective fashion.

Swarztrauber and Sweet [3] have presented an extensive conparative analysis
of efficiency of various Fast Poisson Solvers for inplenentation on vector and
parall el architectures. This study suggests that the WNatrix-Deconposition (01,
Fourier Analysis [1,4]) algorithmis the nost efficient for a realistic
parallel inplenentation by using a nunber of processors of the order of
hundreds. However, the practical inplenmentation of the MD al gorithm (though
for a three-dinensional problem [51) has shown that the resulting
communi cation cost can significantly reduce its efficiency for parallel
computation. A nore extensive analysis of communication conplexity of the M
algorithmis presented in §4.

The Invariant Imbedding algorithm [6,7] was one of the earliest methods for
direct. solution of the Poisson equation. However, with the devel opnent the
Fast Poisson Solvers with a much greater efficiency, it seens that |ess
attention is paid to this algorithm 1In this paper we develop a novel variant
of this algorithm designated by Fast Invariant Imbedding al gorithm which
achieves the same conputational efficiency as the best Fast Poisson Solver.
The main advantage of the Fast Invariant Imbedding al gorithm over the other
Fast Poi sson Solvers and particularly the MD algorithm is that it is
significantly nore efficient for parallel conputation, In fact, the sinple
comuni cation and synchronization requirements of our algorithm enables its
efficient inplenentation on a variety of parallel and vector architectures.

This paper is organized as follows, 1In &2, the Dirichlet problem for the
Poi sson equation and the MD algorithm are reviewed. 1In &3, we first review the
the original Invariant Imbedding algorithm W then develop the Fast |nvariant
Imbedding and discuss its extension to solution of the problem w th Neumann
boundary as well as its excellent nunerical properties, In &4, the parallel
implementation of the Fast Invariant Imbedding al gorithm on various parallel
architectures is discussed and its performance is conpared with that of the MD
algorithm W also present a hybrid parallel/pipeline strategy for efficient
conputation of our algorithm along with two algorithmically specialized
parallel architectures for its optimal and cost-effective implementation.

2. TWO-DI MENSI ONAL PO SSON EQUATI ON AND MATRI X- DECOVPCSI TI ON ALGORITHM
2.1. Dirichlet Probl em
W consider the Dirichlet problem for the two-dinmensional (2b) Poisson
equation in a unit square domain @ with boundary 8Q as
Vou(x,y) = f(x,vy) (x,y)eq (2.1)
ufx,y) = gix,y) (x,y)edqd

Superinmposing a uniformmesh of size Ax = Ay = 1/(N+1) and using the five-
point finite-difference approximtion, the problemis reduced to solution of a
linear system

M = W (2.2)
for U where
N2 2
MeR™ ‘N is a block tr: diagona. matrix given by M= Tridiag[-1, B, -],
| is the NXN identity matrix,

BeR™" s a tridiagona matrix given by B = Tridiag(-1, 4, -1],

2
u-= Col(Ul}clRN , 1=1to N and U!= Col{U, J}CIRN,j =1to N is the vector

representing the approxi mate solution for u(x,y), and
2
w = Col(wl)clR" , 1i=11to N,and w‘ = Col{w1 j)e:lRN, j = 1to N is the vector

resulting fromthe discretization of f(x,y) and g(x,y).

Alternatively, we present vectors of dinension NNby NxN natrices. To this
end, the matrix representation of U and Wat-e denoted by U and W where

y {U,)} and W 4 (le}CRNXN' iand j =1 toN.

2.2. Matrix Deconposition Al gorithm

The MD algorithmis based on a specific deconposition of matrix M
Fol I owi ng theoremis used in the derivation of the algorithm

Theorem 1. The Eigenvalue-Eigenvector (E-F) deconposition of a symetric
tridiagonal toeplitz matrix S = Tridiaglb, a, bleR"Misgivenas

S= QASQ
The matrix Q = (QU)elR""", i and j =1/12to N, is the set of nornualized
eigenvectors of S with QU = (2/N+1) "“(sin(ijn/N+1)). The di agonal matrix
A, = Diag{r_ }eR"™ is the set of eigenvalues with A_ = a + 2bcos(in/N+1)
being the ith eigenvalue.

Proof. See for exanple Barnett [8].

Note that, Qis a symmetric orthonormal matrix and hence Q= Q* = qQ (t
denotes the transpose).
2 2
Letus define a matrix Q 4 DiaglQ, Q,...,Q, QleR" *™ . Fromits definition,

it follows that Q@ is a symretric orthonormal natrix and hence @ = Qt = Q'l.

22
Al'so, consider a symetric permutation matrix PeR‘ ™that arises in 2-D

Discrete Fourier Transform (DFT). |f two vectors V and R of dinension Nare
defined as V = COHV:} and R = Col(Rl}, i =1to N and V, = Col(V”? and
Ri :Col(R‘ .}, j =1to N thenV = PRinplies that Vl , = RM. Or, using
matrix representation of V and R, we have
V=PR 3V =R
t

That is, Pis the operator for matrix transposition. W also have P-I = p-,

’

t

since P 3s a pernutation matrix and hence it is orthogonal, and P = pt = p!

since P is symetric.

Theorem 2. The matrix M has a deconposition as
M = QPTPQ (2.3)
where T is a bl ock diagonal matrix given bel ow

Proof. From Theorem 1, the E-E deconposition of Bis given as B = QABQ wher e

A, = Diag(Am}cm""", i =1toN and A =4 - 2cos(in/N+1). Using the E-E
deconposition of B, the matrix M can be expressed by
M= Tridiagl-1, QA.Q, -1] = QAQ (2.4)

where Ais a block tridiagonal matrix as A = Tridiagl(-1I, AB’ -11, The bl ock

el ements of A are diagonal and hence the matrix A can be reduce to a bl ock
di agonal matrix as

A = PPAPP = P(PAP)P = PTP (2.5)
where T = Diag{Tl} and T1 = Tridiag(-1, Agp? -1]. The deconposition of M
given by (2.3), follows by substituting [2.5) into (2.4). o

The MD algorithmis derived by substituting the deconposition of matrix M
into (2.2). The conputation of the MD algorithmis performed as follows.

Step 1: Conpute W = QW or VI’ = QW for i =1toN

Step 2: Formvector W=Pl orW==%1i.e., w" ;= QM for i and j =1 to N
Step 3: Solve the tridiagonal systens TI(AJi = ‘AJ‘ for i =1 toN

Step 4: Formvector U =PUor U =10U%i.e., 01‘1 = 0;,1 for i and j =1 to N
Step 5: Conpute U = QU or Ui=Q0lfor i =1to N

The matrix Qis the operator of 1-D Discrete Sine Transform (DST). Thus, by
using fast techniques [9], the matrix-vector multiplications in Steps 1 and 5
can be performed in O(NLog N). This leads to a conputational conplexity of

O(NLog N) for Steps 1 and 5. The cost of each tridiagonal |inear system
solution in Step 3 is of Q(N) which leads to a cost of O(N®) for this st ep,

3. THE | NVARI ANT IMBEDDING ALGORI THM
3.1. The Original Invariant Imbedding Al gorithm

The Invariant Imbedding algorithm[6,7] is based on the observation that
the solution of (2.2) is equivalent to that of a discrete two-point boundary-
val ue probl em gi ven by

-u ¢ BUl - UM =W i =1to N (3.1)
wi th boundary val ues U0 and UNH. Not e t hat, U0 and UM1 are given through the

specification of boundary conditions in (2. 1). A solution to (3.1) is then
sought of the form

Uy =AY TR (3.2)
where matrices A:’S and vectors Ri’s are independent of U's. From (3, 1) and
(3.2), it follows that

U, = (B- ADTU 4+ (B- AR + W) (3.3)
from which the recurrences for conputation of A and Rl are derived as

_ -1
Ay T LB - A (3.4)

o .
R, = (B-A) (R +W) =A (R + W) (3.5)

The initial conditions for the above recurrences are obtained by considering

(3.2) for i :vanichirrpliesthatQ:Oand Iﬂ:UNﬂ-Asis shown in [6,7],
from positive definiteness of Bit follows that the matrices (B - Ax) are al so
positive definite and hence nonsingul ar.

The conputation of Invariant Imbedding algorithmis performed as foll ows.
Step 1: Conpute A:) from(3.4) for 1= Nto1wth A, = o

Step 2: Conpute R”from(3.5) for 1= Nto 1l wth RN = UNH.

Step 3. Compute U“1 from (3.2) for i = Oto N1 with U given.

The conputational conmplexity of Step 1 is of O(N*) while that of St eps 2

and 3.is of o(N%). This leads to an overall conput ational conplexity of o(NY)
for the algorithm However, the matrices Ai’s are only function of problens

size (i.e., N, the type of finite-difference schene enployed, and the type of
boundary condition. Thus, for sone cases, such as real-time control of SELENE,
these matrices can be preconputed. Wth this preconputation, the conputational

cost of the algorithmis reduced to O(N’) which indicates that the al gorithm
is still less efficient than other Fast Poi sson Sol vers.

3.2. A Fast Invariant Imbedding Al gorithm

The inefficiency of the Invariant Imbedding algorithmresults fromthe fact
that it requires the inversion of dense matrices A 's. However, as shown

below, these matrices have fast E-E deconposition which allows the
diagonalization of (3.2), (3.4), and (3.5). This diagonalization results in an
algorithmthat not only it is highly conpetitive for sequential inplenentation
but also it 1s very efficient for parallel and vector conputation. The
diagonalization procedure is based on the fact that the matrices A’'s have a

sane set of eigenvectors but different sets of eigenvalues. This is
established by the follow ng theorem

Theorem 2. The E-E deconposition of matrix A‘ is given as

A =Qr Q (3.6)

Al
NxN

wher e A“ = Diag{AM j)em ,j = 1to N is given bel ow
Proof. The proof follows by induction. From (3.4), for = N we have
_ -1 _ -1 _ -1
ANl =B = (QABQ) =QxQ
which inplies that
-1

A = A
AN-1 B
Now let A . =Qr, Q.From(3.4), it follows that
_) -1 _) -1 -1
Al = (B AHI) (QABQ QAM#IQ) - Q(AB . Auu)

The set of eigenvalues of matrices Al's are then given by
- -1 i — N : —
Ay g - AT, 1= N1to O with A, =0 (3.7)

Substituting the E-E deconposition of Al’s, given by (3.6), into (3.2) and
(3.5), and defining

1
the fast variant of Invariant Inbedding algorithmis then given by

R =A“_1(Rl+wl),| = Ntol, with RN:U

01 =QU, R = QR , and Qi = QW

N+1 (3.8)

U“1 = AMUl + Rl, i = 0to N1, with given U0 (3.9)

wher e A“’s are conputed from (3.”/). The efficiency of the algorithmcan be

further increased by avoiding the explicit conputation of UO and U i.e.,

N+’
by avoiding explicit transformation of Uo and UN+1' To this end, we rewite

(3.8) for i = N as

Fper = A By Wl T A Uper * ¥ = A%y
i/ = ’ vy — i o=
wher e wN = QwN and MV —NH + wN. Similarly, we rewite (3.8) for i = O as
[j = g + B = (] + B+ O = - S
1 AAOUO R0 AAOUO AAO (Rl w]) ;\AO (Rl wl)

wher e wl = Qw1 and wl = Uo + wl“

The conputation of Fast Invariant Imbedding algorithmis performed as follows,

. - -1 F— : —
Step 1. Conpute AAi = (7% - ﬂﬂ) , 1 =N1to O with A,= 0O
Step 2. Conpute Wy =Uo+w1’ WN=}‘J+1+WN, and set W :Vi\ll =2to N1
Conpute W’ = QW' or W'i = Qw; for 1=1to N

Step 3: Conpute ﬁ‘ . for 1= N1to 1 from

ﬁ = A R W’ ' R = 4
i-1 Al-1 (Rl * wl) with RN*I AAN~‘I N

Step 4: Conpute Um for i = 1to N1 from

0 =20 +R withU =a (R + W)
141 Al 1] 1 A0 1 1

Step 5: Conpute U = QU or u, = QO‘for i = 1toN

Note that, simlar to matrices A"s, the di agonal matrices A“’s are only

function of problems size, the type.of finite-difference scheme, and boundary
conditions, and hence for sone cases they can be preconputed, However, in the
following, the possibility of this precomputation i s not considered in
evaluating the conputational cost of the algorithm

The conputational complexity of Steps 1, 3, and 4 is of o(N%). Except for
the conputation of w; and w;‘, the conputation of Step 2 and 5 are exactly the

same as the Steps 1 and 4 of the MD algorithm It follows that the Fast
I nvariant Imbedding algorithmis, asynptotically, as fast as the MD algorithm

with the sane constant for NZL.og N-dependent term A nore detailed conparison
can show that the algorithmis also conmpetitive in terms of the actual nunber
of operations. Let fdenote the cost of one floating-point operation. The

cost of Steps 1, 3, and 4 is given by 6N2f. Boisvert [101 has conpared various
algorithns for solution of symmetric tridiagonal toeplitz systenms. Using the
best general al gorithmin [10] the cost of solving N tridiagonal systenms in

Step 3 of the MD algorithmis also given by 6NZ2f.
3.3. Numerical Properties of Invariant Imbedding Al gorithns

Both the original and Fast Invariant Imbedding al gorithns have excellent
nunerical properties. Angel [6] has shown that the recurrence in (3.4) is
stable in the sense that an error introduced at any stage of the calculation
does not cause larger errors in the preceding stages and, asynmptotically, it
will be reduced to zero. It then follows that the recurrence in (3.7) is also
stabl e since it is obtained from (3.4) through an orthogonal transformtion.
The two vector recurrences in (3.8) and (3.9) can be witten as two sets of N
scal ar First-Order Inhomogeneous Linear Recurrences (FOILRs) as

~ -~

R by TP, By, * W)it =N-1tolandj=1toN (3.10)

Ui*l, §" AAi,le’,j + Ri,j' i=1toN-1and j=1toN (3,11)

Simlarly, (3.7) can be witten as a set of N scalar first-order nonlinear
recurrences as

1 :
A = ~ , 1 =N-ItoOandj =Ntol, with A =0 (3.12)
AL, S ABJ AAHI,J AN,)

Note that, (3.12) represents a Continued Fraction which can be transformed to
a second-order linear recurrence [11]. Since ABJ>2 for all j =1to N it can

be then easily shown by induction that 1>>\“J>0. This inplies that the two

sets of recurrences in (3. 10)-(3, 11) are stable in the sense that an error
i ntroduced at any stage of the calculation does not cause larger errors in the
preceding stages and, asynptotically, it wll be reduced to zero.

3.4. Neunann Probl em

At first glance, the extension of both Invariant Imbedding al gorithm and
its fast variant to the solution of problem with other boundary conditions
m ght seem |l ess straightforward than that for other FPSs. For the Invariant
Imbedding Method appears to be well suited for Dirichlet boundary condition
for which U0 and Um are explicitly given, Angel and Bellman [7] have

extended the Invariant Imbedding al gorithm for Neumann-Dirichlet boundary
condition. Here, we extend the Fast Invariant Imbedding algorithmto the
solution of problemw th a nore generalized Neumann- Neumann boundary
condition given by

B_u du

A% (0,y) = ¢o(y) and Ix (1,y) = ¢1(y) (3. 13)
U (4,00 = ¢ (x) and & (x,1) = ¢ (x) (3. 14)
5y (X 0) = g (x an By (x,1) = p, (x :

wher e ¢0(y), ¢1(y), «)o(x), and gol(x) are given functions.

Extending the domain by introducing fictitious points u(-1,j) and u(N+2,j),
for j = Oto N+1, (3.1) is now witten as

- U1-1 + BU1 - U“1 = W'i i = 0 to N+1 (3. 15)
where, now U and w;cm("’z’, and BerR™# ™2 5 3 tridiagonal matrix as
[4 2
1 4 -1
B=| . . - (3. 16)
_l l‘4 13
| -2

The structure of matrix B results fromthe discretization of the boundary
condition in (3.13) by using a central-difference schene with a second order
accuracy. Also, the vectors w;, for i = 1to N, include the contribution of

¢0(y) and ¢1(y). The expressions of w(’) and w,,, are gi ven bel ow.

By using the results of [9, p. 252], it can be shown that the E-E
deconposition of matrix B is given by:

B=0AQ" (3.17)
The matrix Q = (QU)eR("‘Z)X("’Z’, i and | = Oto N+1, is the set of
eigenvectors of B with Q == cos(iju/N+1)} and A = Diag{A yeR N2 X (Ne2)
i = Oto N+1, is the set of eigenvalues of B with Ay T 4 - 2cos(in/N+1) being
the ith eigenvalue. Note that, the matrix Q is not orthogonal, However, as
shown in[9],Q and Q| can be expressed as:
Q=16% and Q1 = (2/N-1)¥ "0

where 0 is the 1-D Discrete Cosine Transform (DcT) operator and Y is a
di agonal scaling matrix given by ¥ =2, 1, 1, 2]. Defining the

normal i zed DCT operator as 8 = (2/N+2) "%, (3.17) can be then witten as

B= ey e
Def i ni ng
U =es »u =960
the diagonalized version of (3.15) is witten as:

- 01 . ABU, - UM = \2‘1; i = 0 to N+1 (3.18)

Discretising (3.14) by using a central-difference schene gives
Upeo "W =9 2 Uy, = Ut e (3.19)
U1 - U_1 =9, 2 U~1 = U1 A (3.20)

wher e 0, = col(qpl(xj)) and ¢, = col(qpo(xj)),j = Oto N+1, From (3.18)-(3.20)
it follows that

-ZUN * ABUNM - wrm * ' - w;m (3.21)
'—20 + U =W + o = W
y T AU, =W e =W (3.22)
We are seeking a solution of the form
U, =AU+ R or U, = AU R, (3.23)
Considering (3.23) for i = N and from (3,21) it follows that
— -1 O) ¥
AAN = ZAB and R = A, W (3.24)
and considering (3.23) for i = O and from(3,22) we get
~ -1,,.~ ~,
U, = (AB - ZAAO) (2R0 + wo) (3.25)
Starting with A, and ﬁN gi ven by (3.24), A and ﬁl, i =N1to O can be
conputed as before from (3.7)-(3.8). Once le and f—io are conput ed, GO can be
obtai ned from (3.25) and then 0,, for i = 1 to N, can be conputed from (3.23).

As can be seen, except for the use of natrices 8¥ and ¥7'e for performng the
direct and inverse DCT, the above procedure differs fromthat gf Dirichlet
boundary condition of §3.2 only in conputation of A, ﬁN, and s

Note that, since ABJ>2 for j = Oto N from (3.24) we haveANAj<1. It
can be then easily shown that A“ < for alliand j =Oto N Thus, we have

ABJ - 2&J>O

whi ch proves that the diagonal matrix in (3.25) can be inverted.

4. Parallel Inplenentation of Fast Invariant Imbedding Al gorithms

In this section we discuss the performance of the Fast Invariant Imbedding
algorithm for parallel computation. W conpare this performance with that of
MD algorithm while inplenented on the sane architecture.

4.1. Fine Gain Parallel Conputation: Tine and Processor’'s Bounds

Wth 0(N%) processors, the computation of the MD al gorithm can be perforned
in 0(Log N [12] as follows. In Steps 1 and 5 the N DSTS can be conputed in
parallel. Each DST can be performed in 0(Log N) with Q'N) processors [12].

Thus, by using O(N°) processors, the cost of parallel conputation of Steps 1
and 5 is of 0(Log N). In Step 3, N tridiagonal systens can be solved in
parallel. Wth Q'N) processors, each tridiagonal system can be solved in
O(Log N), by using, for example, the parallel algorithms in [131. Thus, with

0(N%) processors, the cost of parallel conmputation of Step 3 is O(log N).

The sane time- and processor-bounds can be also achieved for the Fast
I nvariant Imbedding algorithm Step 1 involves the evaluation of N decoupled
CFS ($3.3). Wth QN processors and by using the algorithmin [111, each CF

can be conputed in O(Log N. Thus, by using 0(N%) processors, the cost of
paral l el conputation of this step is of 0(log N). In Step 2, the two vector
additions for conputation of W; and w; can be performed in (1) by using QN

processors. The rest of the conputation in Step 2 and the conputation of Step
5 are exactly the sane as in Steps 1 and 5 of the Mb algorithnms and thus can

be performed in O(Log N) by using 0(N%) processors. The vector recurrences in
Steps 3 and 4, as shown in §3.3., can be deconposed into a set of N decoupled
scal ar FOILRs. Wth Q(N) processors and by using the algorithms in [11,13],

each FOILR can be conmputed in O(Log N). Thus, with 0(N%) processors, the
conpl exity of parallel conputation of Steps 3 and 4 is of O{Log N).

However, achieving the time |ower bound of o(Log N) in parallel conputation
of either the MD algorithmor the Fast Invariant Imbedding al gorithm requires
an excessive nunmber of processors. Mre inportant, in order to linit the
communi cation conplexity to O(Log N), a very conplex processors
i nterconnection is required. In the followi ng, we consider a nore realistic
coarse grain parallel inplementation of both algorithms.

4.2. Coarse Grain Parallel Conputation

W consider a coarse grain parallel conputational strategy by using N
processors. It should be mentioned that the early interest in the MD al gorithm
was nmotivated by its theoretical efficiency for parallel inplementation with N
processors [41. In fact, with N processors, the conputation of N decoupled
DSTS in Steps 1 and 5 can be perfornmed fully in parallel with a conplexity of
O(NLog N). That is, the cost .of parallel inplementation of Steps 1 and 5 is
equal to that of one DST. Simlarly, the N decoupled linear systens in Step 3
can be performed in parallel. Thus, the cost of parallel conputation of Step 3
is equal to that of one single linear system solution. Thisimplies a perfect
linear speedup of N in the computation by using N processors.

However, a close exami nation shows that the resulting communication cost
can significantly degrade the overall performance of such parallel conputation
strategy. To see this, recall that the operation in Steps 2 and 4 corresponds

to transposing matrices ¥ and g The conmuni cation conplexity of matrix
transposition is a function of the processors interconnection structure. Wth

10

N processors interconnected with a perfect shuffle or a Hypercube topol ogy,

the communication conplexity of matrix transposition is of O(NLog N) [14,15].
Thi s ImplleSthat, asynptotically, the conmputation and communication costs are
the same. Cbviously, on architectures with sinpler interconnection topologies,
e.g., linear array or nesh, the communication cost will be nuch greater than
the conputation cost.

However, the practical inplementation on MM architectures with even
Hypercube topol ogy can result in an actual conmunication cost much greater
than the conputation cost. To see this, let B and adenote the cost of the

communi cation start-up (or, latency) and the el emental transfer time. Note
that, usually, aisapproximately equal to the cost of one floating-point
operation, i.e. , f,while B»a [16]. The conmunication cost of Steps 2 and 4,

by using the algorithmin [15], is then given by 2(8+a)(NLog N). Negl ecting
the lower order terms, the conputation cost of Steps 1 and 5 is given by
5f(NLog N). Since g is nuch greater than f(even by as much as two orders of
magni tude for many conmercially available Hypercube architectures), it follows
that the communication cost of the algorithm can be indeed much greater the
conput ati on cost.

Now, |et us consider the parallel inplenmentation of the Fast Invariant
Imbedding al gorithm by N processors, denoted by PRl for i = 1to N In Step 2,

the conputation of w; by PR, and w;‘ by PR, can be performed in parallel with a

cost of Q(N). The rest of the conputation of Step 2 as well as that of Step 5
can be perforned simlar to that of Steps 1 and 5 of the MD algorithmwith a
cost of O(NLog N) in fully parallel fashion and w thout any communication
among processors. By using the parallel algorithms in [111, the conputation of
CFS in Step 1 and the FOILRs in Steps 3 and 4 can be conputed in O(NLog N). On
an architecture with a perfect shuffle interconnection, the conmunication
complexity of such a strategy for parallel conputation of Steps 1, 3, and 4 is
of O(NLog N). Thus, on an MIMD architecture with the perfect shuffle topol ogy,
t he conmuni cation conplexity of the Fast Invariant Imbedding algorithmwll be
of o((B+aN)Log N). For typical values of N of the order of hundred, this
represents about two orders of nagnitude inprovenent in the communication

cost over that of the MD algorithm on the sane architecture.

The simple conmunication structure of the Fast Invariant Imbedding
algorithmenables its efficient inplenentation on architectures with even
sinmpl er processors interconnection topology, To see this, let us consider the
i mpl ement ation of the algorithmon an MIMD architecture with a sinple nearest
nei ghbor interconnection (Fig. 1). As is shown in [13], with a nearest
nei ghbor interconnection the communication conplexity of parallel conputation
of Steps 1, 3, and 4 will be of O((B+aN)N). Insofar as B»x and for the val ues
of Nin the range of hundreds, this represents a major inprovenent over the
communi cation cost of the MD algorithm inplemented with a hypercube topol ogy.

The Intel i860 and DEC Al pha are representatives of an emerging class of
single chip processors with vector processing capability. Such vector
processors are increasingly used as processing nodes in massively parallel
M MD architectures, e.g., Intel Touchstone Delta and Paragon, and CRAY T3D. If
the architecture of Fig. 1 is inmplemented by using such |ow cost and powerful
vector processors then a further speedup in conputation of the Fast Invariant

11

Imbedding al gorithm can be achieved. This follows fromthe fact that parallel

conputation of Steps 1, 3, and 4 involves operations on-long vectors and hence
is highly efficient for vector processing,

4.3. Agorithmically Specialized Parallel Architectures for Inplenentation of
Fast Invariant Imbedding Al gorithm

4.3.1 A Communication Efficient Variant of Fastlnvariant |nbedding Al gorithm

It is possible to further reduce the communi cation cost of the Fast
I nvariant |nbedding algorithmby using a hybrid parallel/pipelined
conputational strategy. To see this, note that, the above discussed N-parallel
strategy is based on parallel conputation of Step 1, with diagonal matrices
A, as the basic data, and Steps 3 and 4, with vectors g and 0 as the basic
data. However, as shown in Eq. (3.12), the conputation of Step 1 can be
reduced to that of a set of CFS. Similarly, as shown by Egs. (3.10)-(3. 11),
the conputation of Steps 3 and 4 can be reduced to that of a set of scalar
FOILRs. An efficient hybrid parallel/pipelined conputational strategy is then
based on parallel conmputation of Steps 2 and 5 as before but pipelining in the
conputation of the set of CFSin Step 1 and the sets of scalar FOILRs in Steps
3 and 4. In order to describe this pipelining strategy, |et us again consider
an inplenmentation by using N processors, denoted by PRl for i =1to N The

activities of processors PR, for conputing Steps 1, 3, and 4 is then given as

Step 1 Step 3
Forj =1to N Do For j =1 to N
Recei ve A from PR Receive R from PR
Al, J 141 1, i+l
— * _ D - i3 N1
Conput e AM-!,.] = |/ (a*, A“ ’,) Conput e Ri-l,j A“_l’ J(Rl’J . wi’J)
Send 7«“_1’1 to PRl-l Send RAI-I, | to PRH
End_Do End_ Do
Step 4
For j = 1to N Do
Recei ve U fromPR

~ ~

i-1,)

Conput e i,] U :M-l,le-l, N RI-I,J
Send a to PR
AY 1

End_Do

-1, 1

Wth this pipelining strategy, the conplexity of conputation of Steps 1, 3,
and 4 is of Q(N) which indicates a speedup of Q(N). More inportant, is the
fact that, by overlapping the conputation and conmunication, the conmunication
cost is now of Q1) while only demanding data transfer between Adjacent
processors. Note, however, that this parallel/pipeline strategy leads to a

12

het erogeneous conputational structure since it involves highly coarse grain
computations in Steps 2 and 5 and very fine grain conputations in Steps 1, 3,
and 4. In fact, the key to an efficient inplenentation of this pipeline
strategy is the capability to perform fine grain conputation as well as fast
nearest nei ghbor comunication. In this regard, this strategy is not suitable
for inplementation on the MM) architecture of Fig. 1 since it can not perform
nearest nei ghbor conmunication in a fast and efficient way. In the follow ng,
we di scuss two nmore optimal architectures for inplementation of this parallel/
pi peline strategy,

4.3.2. An Optimal Al gorithmcally Specialized Parallel Architecture

The conputation of various Discrete Transforms {(DTs) arises in many
engineering and scientific applications. This has notivated the devel opnent of
speci al - purpose chips for fast conputation of DIs by both acadenmia and
i ndustry. These chips achieve an optimal performance in performng DTs by
custom zing the hardware architecture for the specific application and by
exploiting a high degree of parallelismin the conputation. An extensive
survey of such special -purpose chips for performng DCT (which also arises in
data conpression applications) is presented in [17]. W have also presented a
new hardware technol ogy based on charge domain computing devices [18] which is
particularly efficient for performng various DIs since it is capable of
exploiting a nmmssive degree of parallelism in the computation.

A heterogeneous, algorithmcally-special 1ized, parallel architecture for
optimal inplenmentation of the Fast Invariant Imbedding al gorithm can be then
desi gned by using special -purpose chips for performng the DCTs in Steps 2 and
5, and fine-grain processors, such as Digital Signal Processor (DSP) chips,

for conputation of Steps”l, 3, and 4. Figure 2 shows such an architecture. The
optimality of this architecture for the Fast Invariant |nbedding algorithm
follows fromthe fact that, in addition to efficient inplementation of the

parallel/pipeline strategy and thus minimzing the comunication cost, it
allows a fast computation of Steps 2 and 5 by using special-purpose chips and
exploiting further parallelismin conmputation of DCTS.

4.3.3. AlLow Cost Algorithmically Specialized Parallel Architecture

The devel opnent of DSP chips was mainly motivated for computing DTs. The
DSP chips only enploy a pipelined architecture to speedup the conputation of
DIs. In this regard, they can not achieve the optimal performance of other
speci al - purpose chips which exploit a high degree of parallelismin the
comput ation. Nevertheless, the DSP chips can be used both as fine-grain
processors for performng Steps 1, 3, and 4 and as coarse-grain processors
for performng the DCTS (though with |ess optinal perfornance).

This suggests that a linear array of DSP chips (Fig. 3) can also be used
for efficient inplementation of the parallel/pipeline strategy for the Fast
I nvari ant Imbedding al gorithm Al though, conpared with the architecture of
Fig. 2, this architecture achieves a |less optiml performance in conputing
Steps 2 and 5, it represents a much nore cost-effective alternative with a
greater ease for the design and inplenentation.

13

ACKNOVLEDGMENT

This research was carried out by the Jet Propulsion Laboratory, California
Institute of Technology, under contract with the National Aeronautics and

Space Administration (NASA), The authors gratefully acknowledge the support
and encouragement of Dr. George Sevaston from JPL.

REFERENCES

L M Milman, A, Fijany, and D. Redding, “Wavefront Control Al gorithns for a
Dense Adaptive Optics System " Proc. SPIE Int. Synp. OE/LASE 94 (this
proceedi ng), Los Angeles, CA Jan. 1994,

2. B. Buzbee, G. Golub, and C. Nielson, "On Direct Methods for Sol ving
Poi sson Equations, " SIAM J. Nuner. Anal., Vol. 7, pp. 627-656, 1970.

3. P. Swarztrauber and R Sweet, “Vector and Parallel nethods for the Direct
Sol ution of Poisson’s Equation, " J. Computional & Applied Math., Vol. 27,
pp. 241-263, 1989.

4. B. Buzbee, "A Fast Poisson Solver Anenable to Parallel Computation, " |EEE
Trans. Conputers, Vol. C-22, pp. 793-796, 1973.

5. R Sweet, W Briggs, S. Olivera, J. Porsche, and T. Turnbull, "FFTs and
Three- Di mensi onal Poi sson Solvers for Hypercube, " Parallel Conputing,
vol. 17, pp. 121-131, 1991.

6. E Angel, "A Building Block Technique for Elliptic Boundary-Val ue Problens
over Irregular Regions, ” J. Math. Anal. Appl., Vol. 26, pp. 75-81, 1969.

7. E. Angel and R Bellnman, Dynamic Programming and Partial Differential
Equations. Acadenic Press, 1972.

8. S. Barnett, Matrices: Methods and Applications. Clarendon Press, 1990.

9. C Van Loan, Computational frameworks for the Fast Fourier Transform.

SI AM Phil adel phia 1992.

10. R.F. Boisvert, ''"Algorithns for Special Tridiagonal Systems, " SIAM J. Sci.
Stat. Comput., Vol. 12(2), pp. 423-442, March 1991.

11. P.M Kogge and H.S. Stone, "A Parallel Algorithmfor the Efficient Solution
of a General Cass of Recurrence Equations, “ |EEE Trans. on Conputers,
Vol. C-22(8), pp. 786-793, Aug. 1973.

12. A, H Saneh, s. C. Chen, and D. J. Kuck, "Parallel Poi sson and Biharmonic
Solvers, " Conputing, Vol. 17, pp. 219-230, 1976.

13. R Hockney and C. Jesshope, Parale Computers. Adam Hilger Ltd. , 1981.

14. H.S. Stone, ''Parallel Processing with the Perfect Shuffle, " |EEE Trans. on
Computers, Vol. C20(2), pp. 153-161, Feb. 1971.

15. 0. McBryan and E. Van De Velde, "Hypercube Al gorithms and |nplenentation, ”
SIAM J. Sci.Stat. Comput., Vol. 8(2), pp. 227-287, March 1987.

16, Y. Saad and M.H. Schultz, '’'Data Communication in Hypercube, " J. Parallel
and Distributed Computing, Vol. 6, pp. 115-135, 1989.

17. K.R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages,
Applications. Academc Press, 1990.

18. A Fijany, J. Barhen, and N. Toomarian, ''Massively Parallel Neurocomputing
for Aerospace Applications, " Proc. Conputing in Aerospace 9 Conf. ,
pp. 1002-1010, San Diego, CA, Cct. 1993,

14

a & = & B -——1 VP

Figure 1. An MIMD Parallel Architecture with Nearest Neighbor Interconnection

VP: Vector Processor, e.g., Intel i860, DEC Alpha

FP1 T FP2 M ———P » = ® ® ® = - FPN
1 i
Y Y

SP1 . sz i~ @ w B A & ———— SPN

Figure 2. An Optimal Algorithmically Specialized Parallel Architecture

FP: Fine Grain Processor, e.g., a DSP Chip SP: Special-Purpose Processor for performing DCT

DSP

\ »| DSP_ la—»

--n-l<——>DSP

.

Figure 3. A Linear Array of Low-Cost DSP Chips
DSP: Digital Signal Processor Chip

15

